Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: covidwho-20243981

RESUMEN

SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin-converting enzyme 2 (ACE2) and results in the production of multiple proinflammatory cytokines, especially in the lungs, leading to what is known as COVID-19. However, the cell source and the mechanism of secretion of such cytokines have not been adequately characterized. In this study, we used human cultured mast cells that are plentiful in the lungs and showed that recombinant SARS-CoV-2 full-length S protein (1-10 ng/mL), but not its receptor-binding domain (RBD), stimulates the secretion of the proinflammatory cytokine interleukin-1ß (IL-1ß) as well as the proteolytic enzymes chymase and tryptase. The secretion of IL-1ß, chymase, and tryptase is augmented by the co-administration of interleukin-33 (IL-33) (30 ng/mL). This effect is mediated via toll-like receptor 4 (TLR4) for IL-1ß and via ACE2 for chymase and tryptase. These results provide evidence that the SARS-CoV-2 S protein contributes to inflammation by stimulating mast cells through different receptors and could lead to new targeted treatment approaches.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Quimasas/metabolismo , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-33/metabolismo , Mastocitos/metabolismo , Unión Proteica , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Triptasas/metabolismo
2.
Cell Immunol ; 386: 104705, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2266426

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection activates mast cells and induces a cytokine storm, leading to severe Coronavirus disease in 2019 (COVID-19). SARS-CoV-2 employs angiotensin-converting enzyme 2 (ACE2) for cell entry. In the present study, the expression of ACE2 and its mechanism in activated mast cells were studied utilizing the human mast cell line, HMC-1 cells and it was elucidated whether dexamethasone used as a treatment for COVID-19 could regulate ACE2 expression. Here we documented for the first time that levels of ACE2 were increased by stimulation of phorbol 12-myristate 13-acetate and A23187 (PMACI) in HMC-1 cells. Increased levels of ACE2 were significantly diminished by treatment with Wortmannin, SP600125, SB203580, PD98059, or SR11302. The expression of ACE2 was most significantly reduced by the activating protein (AP)-1 inhibitor SR11302. PMACI stimulation enhanced the expression of the transcription factor AP-1 for ACE2. In addition, levels of transmembrane protease/serine subfamily member 2 (TMPRSS2) and tryptase were increased in PMACI-stimulated HMC-1 cells. However, dexamethasone significantly lowered levels of ACE2, TMPRSS2, and tryptase generated by PMACI. Treatment with dexamethasone also reduced activation of signaling molecules linked to ACE2 expression. According to these findings, levels of ACE2 were up-regulated through activation of AP-1 in mast cells, suggesting that suppressing ACE2 levels in mast cells would be a therapeutic approach to lessen the harm caused by COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , Dexametasona/farmacología , Mastocitos/metabolismo , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/metabolismo , Factor de Transcripción AP-1 , Triptasas
3.
Respir Res ; 23(1): 371, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2196286

RESUMEN

BACKGROUND: There is still insufficient knowledge with regard to the potential involvement of mast cells (MCs) and their mediators in the pathology of coronavirus disease-2019 (COVID-19). Therefore, our study aimed to investigate the role of MCs, their activation and protease profiles in the pathogenesis of early and late lung damage in COVID-19 patients. METHODS: Formalin-fixed and paraffin embedded lung specimens from 30 patients who died from COVID-19 and 9 controls were used for histological detection of MCs and their proteases (tryptase, chymase) followed by morphometric quantification. RESULTS: Our results demonstrated increased numbers of MCs at early stage and further augmentation of MCs number during the late stage of alveolar damage in COVID-19 patients, as compared to the control group. Importantly, the percentage of degranulated (activated) MCs was higher during both stages of alveolar lesions in comparison to the controls. While there was no prominent alteration in the profile of tryptase-positive MCs, our data revealed a significant elevation in the number of chymase-positive MCs in the lungs of COVID-19 patients, compared to the controls. CONCLUSIONS: MCs are characterized by dysregulated accumulation and increased activation in the lungs of patients suffering from COVID-19. However, future profound studies are needed for precise analysis of the role of these immune cells in the context of novel coronavirus disease.


Asunto(s)
COVID-19 , Mastocitos , Humanos , Quimasas , Mastocitos/patología , Triptasas , COVID-19/patología , Pulmón/patología
4.
Front Immunol ; 13: 968981, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2114656

RESUMEN

Background: The systemic inflammatory response post-SARS-CoV-2 infection increases pro-inflammatory cytokine production, multi-organ damage, and mortality rates. Mast cells (MC) modulate thrombo-inflammatory disease progression (e.g., deep vein thrombosis) and the inflammatory response post-infection. Objective: To enhance our understanding of the contribution of MC and their proteases in SARS-CoV-2 infection and the pathogenesis of the disease, which might help to identify novel therapeutic targets. Methods: MC proteases chymase (CMA1), carboxypeptidase A3 (CPA3), and tryptase beta 2 (TPSB2), as well as cytokine levels, were measured in the serum of 60 patients with SARS-CoV-2 infection (30 moderate and 30 severe; severity of the disease assessed by chest CT) and 17 healthy controls by ELISA. MC number and degranulation were quantified by immunofluorescent staining for tryptase in lung autopsies of patients deceased from either SARS-CoV-2 infection or unrelated reasons (control). Immortalized human FcεR1+c-Kit+ LUVA MC were infected with SARS-CoV-2, or treated with its viral proteins, to assess direct MC activation by flow cytometry. Results: The levels of all three proteases were increased in the serum of patients with COVID-19, and strongly correlated with clinical severity. The density of degranulated MC in COVID-19 lung autopsies was increased compared to control lungs. The total number of released granules and the number of granules per each MC were elevated and positively correlated with von Willebrand factor levels in the lung. SARS-CoV-2 or its viral proteins spike and nucleocapsid did not induce activation or degranulation of LUVA MC in vitro. Conclusion: In this study, we demonstrate that SARS-CoV-2 is strongly associated with activation of MC, which likely occurs indirectly, driven by the inflammatory response. The results suggest that plasma MC protease levels could predict the disease course, and that severe COVID-19 patients might benefit from including MC-stabilizing drugs in the treatment scheme.


Asunto(s)
COVID-19 , Carboxipeptidasas , Quimasas/metabolismo , Citocinas , Humanos , Mastocitos/metabolismo , SARS-CoV-2 , Triptasas/metabolismo , Proteínas Virales , Factor de von Willebrand
5.
Lancet Respir Med ; 9(11): 1299-1312, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1505881

RESUMEN

BACKGROUND: Tezepelumab is a human monoclonal antibody that blocks the activity of thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine. In phase 2b and 3 studies, tezepelumab significantly reduced exacerbations versus placebo in patients with severe uncontrolled asthma, irrespective of baseline levels of type 2 inflammatory biomarkers. We investigated the mechanism of action of tezepelumab by assessing its effects on airway inflammatory cells, airway remodelling, and airway hyperresponsiveness. METHODS: CASCADE was an exploratory, double-blind, randomised, placebo-controlled, parallel-group, phase 2 study done in 27 medical centres in Canada, Denmark, Germany, the UK, and the USA. Adults aged 18-75 years with uncontrolled, moderate-to-severe asthma were randomly assigned (1:1) to receive tezepelumab 210 mg or placebo administered subcutaneously every 4 weeks for a planned 28 weeks, extended to up to 52 weeks if COVID-19-related disruption delayed participants' end-of-treatment assessments. Randomisation was balanced and stratified by blood eosinophil count. The primary endpoint was the change from baseline to the end of treatment in the number of airway submucosal inflammatory cells in bronchoscopic biopsy samples. Eosinophils, neutrophils, CD3+ T cells, CD4+ T cells, tryptase+ mast cells, and chymase+ mast cells were evaluated separately. This endpoint was also assessed in subgroups according to baseline type 2 inflammatory biomarker levels, including blood eosinophil count. Airway remodelling was assessed via the secondary endpoints of change from baseline in reticular basement membrane thickness and epithelial integrity (proportions of denuded, damaged, and intact epithelium). Exploratory outcomes included airway hyperresponsiveness to mannitol. All participants who completed at least 20 weeks of study treatment, had an end-of-treatment visit up to 8 weeks after the last dose of study drug, and had evaluable baseline and end-of-treatment bronchoscopies were included in the primary efficacy analysis. All participants who received at least one dose of study drug were included in the safety analyses. This study is registered with ClinicalTrials.gov, NCT03688074. FINDINGS: Between Nov 2, 2018, and Nov 16, 2020, 250 patients were enrolled, 116 of whom were randomly assigned (59 to tezepelumab, 57 to placebo). 48 in the tezepelumab group and 51 in the placebo group completed the study and were assessed for the primary endpoint. Treatment with tezepelumab resulted in a nominally significantly greater reduction from baseline to the end of treatment in airway submucosal eosinophils versus placebo (ratio of geometric least-squares means 0·15 [95% CI 0·05-0·41]; nominal p<0·0010), with the difference seen across all baseline biomarker subgroups. There were no significant differences between treatment groups in the other cell types evaluated (ratio of geometric least-squares means: neutrophils 1·36 [95% CI 0·94-1·97]; CD3+ T cells 1·12 [0·86-1·46]; CD4+ T cells 1·18 [0·90-1·55]; tryptase+ mast cells 0·83 [0·61-1·15]; chymase+ mast cells 1·19 [0·67-2·10]; all p>0·10). In assessment of secondary endpoints, there were no significant differences between treatment groups in reticular basement membrane thickness and epithelial integrity. In an exploratory analysis, the reduction in airway hyperresponsiveness to mannitol was significantly greater with tezepelumab versus placebo (least-squares mean change from baseline in interpolated or extrapolated provoking dose of mannitol required to induce ≥15% reduction in FEV1 from baseline: tezepelumab 197·4 mg [95% CI 107·9 to 286·9]; placebo 58·6 mg [-30·1 to 147·33]; difference 138·8 [14·2 to 263·3], nominal p=0·030). Adverse events were reported in 53 (90%) patients in the tezepelumab group and 51 (90%) patients in the placebo group, and there were no safety findings of concern. INTERPRETATION: The improvements in asthma clinical outcomes observed in previous studies with tezepelumab are probably driven, at least in part, by reductions in eosinophilic airway inflammation, as shown here by reduced airway eosinophil counts regardless of baseline blood eosinophil count. Tezepelumab also reduced airway hyperresponsiveness to mannitol, indicating that TSLP blockade might have additional benefits in asthma beyond reducing type 2 airway inflammation. FUNDING: AstraZeneca and Amgen.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/farmacología , Asma , Hipersensibilidad Respiratoria , Asma/tratamiento farmacológico , Quimasas , Método Doble Ciego , Eosinofilia , Humanos , Inflamación , Manitol , Hipersensibilidad Respiratoria/tratamiento farmacológico , Resultado del Tratamiento , Triptasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA